martes, 10 de julio de 2012

Unidad 4


Nombre de la asignatura:   Cálculo Integral
Carrera:   Ingeniería en Sistemas Computacionales
Clave de la asignatura:   ACF-0902
(Créditos) SATCA:   3 - 2 - 5

Temario Unidad 4


TEMA: SERIES

4.1 Definición de serie.
      4.1.1 Finita.
      4.1.2 Infinita.
4.2 Serie numérica y convergencia Prueba de la razón (criterio de D´Alembert) y Prueba de la raíz (criterio  de Cauchy).
4.3 Serie de potencias.
4.4 Radio de convergencia.
4.5 Serie de Taylor.
4.6 Representación de funciones mediante la serie de Taylor.
4.7 Cálculo de Integrales de funciones expresadas como serie de Taylor.

4.1 Definición de serie

Una serie es la suma indicada de los terminos de una sucesión.
Así, de las sucesiones anteriores obtenemos las series 


1+4+9+16+25


Cuando el numero de terminos es limitado, se dice que la sucesion o serie es finita. Cuando el numero de terminos es ilimitado, la sucesición o serie se llama una sucesión infinita o una serie infinita.


El termino general o termino enesimo es una expresion que indica la ley de la fomación de los terminos




Ejemplo :

En la primera sucesión anterior, el termino general o termino enesimo es n2. El primer terminose obtiene haciendo n=1, el decimo termino haciendo n=10


 


En matemáticas, una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a1 + a2 + a3 + · ·  lo cual suele escribirse en forma más compacta con el símbolo de sumatorio:

 \sum a_n.

El estudio de las series consiste en la evaluación de la suma de un número finito n de términos sucesivos, y mediante un pasaje al límite identificar el comportamiento de la serie a medida que n crece indefinidamente.

Una secuencia o cadena «finita», tiene un primer y último término bien definidos; en cambio en una serie infinita, cada uno de los términos suele obtenerse a partir de una determinada regla o fórmula, o por algún algoritmo. Al tener infinitos términos, esta noción suele expresarse como serie infinita, pero a diferencia de las sumas finitas, las series infinitas requieren de herramientas del análisis matemático para ser debidamente comprendidas y manipuladas.


Existe una gran cantidad de métodos para determinar la naturaleza de convergencia o no-convergencia de las series matemáticas, sin realizar explícitamente los cálculos.
    


 

4.1.1 Finita.

Una serie numerica es un conjunto especial de números que se forma ordenadamente siguiendo determinada ley o condición, así por ejemplo.

 
2, 4, 6, 8, 10, 12, 14
2, 4, 8, 16, 32, 64,....
1, 1/2, 1/3, 1/4, 1/5
3, 6, 10, 12, 14, 20


Cuando la sucesión tiene un último término se dice que la sucesión es finita.

xi = 0 para todo i > n y yi = 0 para todo i > m. En este caso el producto de
Cauchy de   
Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy es directamente la multiplicación de las series.


xi = 0 para todo i > n y yi = 0 para todo i > m

En este caso el producto de Cauchy de  \sum x_i y \sum y_i se verifica es (x_0+\cdots + x_n)(y_0+\dots+y_m)

Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy es directamente la multiplicación de las series.



4.1.2 Infinita.

Es un arrglo ordenado de numeros reales, uno para cada entero positivo. Mas formal mente una sucesión infinita es una funcion cuyo dominio es el conjunto de enteros positivos y cuyo rango es un conjunto de numeros reales. Podemos indicar una sucesion mediante a1 ,a2 ,a3,...., simplemete por {an}

Se puede especificar una sucesion dando suficientes terminos iniciales para establecer un patron como en

1, 4, 7, 10, 13, ....

mediante una formula explicita para el n-énesimo termino, como en

an = 3n-2,   n ≥ 1

Para alguna a,b\in\mathbb{R}, sea x_n = a^n/n!\, y y_n = b^n/n!\,. Entonces

 C(x,y)(n) = \sum_{i=0}^n\frac{a^i}{i!}\frac{b^{n-i}}{(n-i)!} = \frac{(a+b)^n}{n!}

por definición y la fórmula binomial. Dado que, formalmente, \exp(a) = \sum x y \exp(b) = \sum y, se ha demostrado que \exp(a+b) = \sum C(x,y). Como el límite del producto de Cauchy de dos series absolutamente convergentes es igual al producto de los límites de esas series, se ha demostrado por lo tanto la fórmula exp(a + b) = exp(a)exp(b) para todo a,b\in\mathbb{R}.

4.2 Serie numérica y convergencia Prueba de la razón (criterio de D´Alembert) y Prueba de la raíz (criterio de Cauchy).

Carácter de una serie.

  • Convergente: Cuando la suma es un número real.

  • Divergente: Cuando la suma da + o - infinito.

  • Oscilante: Cuando no es ninguna de las anteriores.


Convergencia de series con solo términos positivos

  • Teorema 1: Toda serie de términos positivos es convergente o divergente, pero nunca oscilante.

  • Teorema 2: Alterando arbitrariamente el orden de los términos, descomponiendo arbitrariamente cada uno de los sumandos, no se altera el carácter de la serie, ni varía su suma.
Criterio de Cauchy o de la Raíz. Calculamos :
  • Si k < 1 la serie converge (Fin)
  • Si k > 1 la serie diverge (Fin)

  • Si k = 1 no sabemos (Continuar)

  • Funciona con : ( )n , ( )p(n)
Criterio de D’Alembert o del cociente. Calculamos :
  • Si k < 1 la serie converge (Fin)

  • Si k > 1 la serie diverge (Fin)

  • Si k = 1 no sabemos (Continuar)
  • Funciona con: kn , n ! , Semifactoriales ( 1·3·5 · · · · · (2n+1))

4.3 Serie de potencias


Una serie de potencias alrededor de x=0 es una serie de la forma:
\sum_{n=0}^\infty a_n (x)^n
Una serie de potencias alrededor de x=c es una serie de la forma:
\sum_{n=0}^\infty a_n (x-c)^n
En el cual el centro es c, y los coeficientes a_n son los términos de una sucesion.

Hemos visto anteriormente los criterios de convergencia para series de números reales positivos o alternados. Utilizando toda esta riqueza analítica vamos a ocuparnos de investigar el comportamiento de una serie de funciones, en particular, de potencias, cuya convergencia va a depender del valor de la variable x. Es así como podremos introducir el concepto de radio de convergencia R. Dentro del intervalo (-R, R) la serie será convergente, fuera, divergente, y en los puntos de frontera, es decir, en x=-R e y=R, deberemos estudiar las series numéricas asociadas a estos dos puntos para determinar la convergencia o divergencia de la serie de potencias en ellos.  

4.4 Radio de convergencia

El radio de convergencia de una serie de la forma \sum_{n=0}^\infty a_n(x-x_0)^n, con a_n,x,x_0\in\mathbb{R}, viene dado por la expresión:
R = \frac{1}{\lim_{n \to \infty} \left | \frac{a_{n+1}}{a_n} \right |}

Si nos limitamos al conjunto de los números reales, una serie de la forma \sum_{n=0}^\infty a_n(x-x_0)^n, con a_n,x,x_0\in\mathbb{R}, recibe el nombre de serie de potencias centrada en x_0. La serie converge absolutamente para un conjunto de valores de x que verifica que |x-x_0|<r, donde r es un número real llamado radio de convergencia de la serie. Esta converge, pues, al menos, para los valores de x pertenecientes al intervalo (x_0-r, x_0+r), ya que la convergencia para los extremos de este ha de estudiarse aparte, por lo que el intervalo real de convergencia puede ser también semiabierto o cerrado. Si la serie converge solo para x_0, r=0. Si lo hace para cualquier valor de x, r= \infty \,\! 


4.5 Serie de Taylor

En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:

  f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}

 Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.
Si a = 0, a la serie se le llama serie de McLaurin.
Esta representación tiene tres ventajas importantes:
  • La derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales.
  • Se puede utilizar para calcular valores aproximados de la función.
  • Es posible demostrar que, si es viable la transformación de una función a una serie de Taylor, es la óptima aproximación posible.
Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo f(x) = exp(−1/x²) se puede desarrollar como serie de Laurent



4.6 Representación de funciones mediante la serie de Taylor

En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:
Aquí, n! es el factorial de n y f (n)(a) indica la n-ésima derivada de f en el punto a.
Si esta serie converge para todo x perteneciente al intervalo (a-r, a+r) y la suma es igual a f(x), entonces la función f(x) se llama analítica. Para comprobar si la serie converge a f(x), se suele utilizar una estimación del resto del teorema de Taylor. Una función es analítica si y solo si se puede representar con una serie de potencias; los coeficientes de esa serie son necesariamente los determinados en la fórmula de la serie de Taylor.

Si a = 0, a la serie se le llama serie de Maclaurin
Esta representación tiene tres ventajas importantes:

* La derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales.

* Se puede utilizar para calcular valores aproximados de la función.

* Es posible demostrar que, si es viable la transformación de una función a una serie de Taylor, es la óptima aproximación posible.

Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de x (véase Serie de Laurent. Por ejemplo f(x) = exp(−1/x²) se puede desarrollar como serie de Laurent. La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos a, es la serie de potencias:

que puede ser escrito de una manera más compacta como
donde n! es el factorial de n y f (n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia f y (x − a)0 y 0! son ambos definidos como uno.





4.7 Cálculo de Integrales de funciones expresadas como serie de Taylor


Este teorema permite obtener aproximaciones polinómicas de una función en un entorno de cierto punto en que la función sea diferenciable. Además el teorema permite acotar el error obtenido mediante dicha estimación.

La serie de Taylor de una funciónf de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejosa, es la serie de potencias:
O en forma compacta:

que puede ser escrito de una manera más compacta como donde n! es el factorial de n yf(n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia fy(x− a)0 y 0! son ambos definidos como uno.


CASO DE UNA VARIABLE
Este teorema permite aproximar una función derivable en el entorno reducido alrededor de un punto a: E (a, d) mediante un polinomio cuyos coeficientes dependen de las derivadas de la función en ese punto. Más formalmente, si n ≥ 0 es un entero y una función que es derivable n veces en el intervalo cerrado [a, x] y n +1 veces en el intervalo abierto (a, x).
Donde denota el factorial de , y es el resto, término que depende de "x" y es pequeño si x está próximo al punto . Existen dos expresiones para que se mencionan a continuación:

donde y "x", pertenecen a los números reales,"n" a los enteros y es un número real entre y "x":
Si es expresado de la primera forma, se lo denomina Término complementario de Lagrange, dado que el Teorema de Taylor se expone como una generalización del Teorema del valor medio o Teorema de Lagrange, mientras que la segunda expresión de R muestra al teorema como una generalización del Teorema fundamental del cálculo integral.

Para algunas funciones , se puede probar que el resto, , se aproxima a cero cuando se acerca al ∞; dichas funciones pueden ser expresadas como series de Taylor en un entorno reducido alrededor de un punto "a" y son denominadas funciones analíticas.

El teorema de Taylor con expresado de la segunda forma es también válido si la función tiene números complejos o valores vectoriales. Además existe una variación del teorema de Taylor para funciones con múltiples variables.



CASO DE VARIAS VARIABLES
El teorema de Taylor anterior puede generalizarse al caso de varias variables como se explica a continuación. Sea B una bola en RN centrada en el punto a, y f una función real definida sobre la clausura cuyas derivadas parciales de orden n+1 son todas continuas en cada punto de la bola. El teorema de Taylor establece que para cualquier :
Donde la suma se extiende sobre los multi-índices α (esta fórmula usa la notación multi-índice). El resto satisface la desigualdad:

para todo α con |α|=n+1. Tal como sucede en el caso de una variable, el resto puede expresarse explícitamente en términos de derivadas superiores

Ejemplo: